Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.08.21253121

ABSTRACT

Purposeto evaluate the association between anti-SARS-CoV-2 S IgM and IgG antibodies with viral RNA load in plasma, the frequency of antigenemia and with the risk of mortality in critically ill patients with COVID-19. Methodsanti-SARS-CoV-2 S antibodies levels, viral RNA load and antigenemia were profiled in plasma of 92 adult patients in the first 24 hours following ICU admission. The impact of these variables on 30-day mortality was assessed by using Kaplan-Meier curves and multivariate Cox regression analysis. Resultsnon survivors showed more frequently absence of anti-SARS-CoV-2 S IgG and IgM antibodies than survivors (26.3% vs 5.6% for IgM and 18.4% vs 5.6% for IgG), and a higher frequency of antigenemia (47.4% vs 22.2%) (p <0.05). Non survivors showed lower concentrations of anti-S IgG and IgM and higher viral RNA loads in plasma, which were associated to increased 30-day mortality and decreased survival mean time. [Adjusted HR (CI95%), p]: [S IgM (AUC [≥]60): 0.48 (0.24; 0.97), 0.040]; [S IgG (AUC [≥]237): 0.47 (0.23; 0.97), 0.042]; [Antigenemia (+): 2.45 (1.27; 4.71), 0.007]; [N1 viral load ([≥] 2.156 copies/mL): 2.21 (1.11; 4.39),0.024]; [N2 viral load ([≥] 3.035 copies/mL): 2.32 (1.16; 4.63), 0.017]. Frequency of antigenemia was >2.5-fold higher in patients with absence of antibodies. Levels of anti-SARS-CoV-2 S antibodies correlated inversely with viral RNA load. Conclusionabsence / insufficient levels of anti-SARS-CoV-2 S antibodies following ICU admission is associated to poor viral control, evidenced by increased viral RNA loads in plasma, higher frequency of antigenemia, and also to increased 30-day mortality. Take-home messageabsent or low levels of antibodies against the S protein of SARS-CoV- 2 at ICU admission is associated to an increased risk of mortality, higher frequency of antigenemia and higher viral RNA loads in plasma. Profiling anti-SARS-CoV-2 s antibodies at ICU admission could help to predict outcome and to better identify those patients potentially deserving replacement treatment with monoclonal or polyclonal antibodies.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.28.20201475

ABSTRACT

The COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3,200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organisations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1,565 positive samples (172 per 100,000 population) from 1,376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6% of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. 1,035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically-distinct UK lineages were detected demonstrating local evolution, at a rate of ~2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a sublineage associated with 6 care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients indicating infection control measures were effective; found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.25.20154252

ABSTRACT

BackgroundSevere COVID-19 is characterized by clinical and biological manifestations typically observed in sepsis. SARS-CoV-2 RNA is commonly detected in nasopharyngeal swabs, however viral RNA can be found also in peripheral blood and other tissues. Whether systemic spreading of the virus or viral components plays a role in the pathogenesis of the sepsis-like disease observed in severe COVID-19 is currently unknown. MethodsWe determined the association of plasma SARS-CoV-2 RNA with the biological responses and the clinical severity of patients with COVID-19. 250 patients with confirmed COVID-19 infection were recruited (50 outpatients, 100 hospitalised ward patients, and 100 critically ill). The association between plasma SARS-CoV-2 RNA and laboratory parameters was evaluated using multivariate GLM with a gamma distribution. The association between plasma SARS-CoV-2 RNA and severity was evaluated using multivariate ordinal logistic regression analysis and Generalized Linear Model (GLM) analysis with a binomial distribution. ResultsThe presence of SARS-CoV-2-RNA viremia was independently associated with a number of features consistently identified in sepsis: 1) high levels of cytokines (including CXCL10, CCL-2, IL-10, IL-1ra, IL-15, and G-CSF); 2) higher levels of ferritin and LDH; 3) low lymphocyte and monocyte counts 4) and low platelet counts. In hospitalised patients, the presence of SARS-CoV-2-RNA viremia was independently associated with critical illness: (adjusted OR= 8.30 [CI95%=4.21 - 16.34], p < 0.001). CXCL10 was the most accurate identifier of SARS-CoV-2-RNA viremia in plasma (area under the curve (AUC), [CI95%], p) = 0.85 [0.80 - 0.89), <0.001]), suggesting its potential role as a surrogate biomarker of viremia. The cytokine IL-15 most accurately differentiated clinical ward patients from ICU patients (AUC: 0.82 [0.76 - 0.88], <0.001). Conclusionssystemic dissemination of genomic material of SARS-CoV-2 is associated with a sepsis-like biological response and critical illness in patients with COVID-19. RNA viremia could represent an important link between SARS-CoV-2 infection, host response dysfunction and the transition from moderate illness to severe, sepsis-like COVID-19 disease.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.24.162156

ABSTRACT

The COVID-19 pandemic has spread to almost every country in the world since it started in China in late 2019. Controlling the pandemic requires a multifaceted approach including whole genome sequencing to support public health interventions at local and national levels. One of the most widely used methods for sequencing is the ARTIC protocol, a tiling PCR approach followed by Oxford Nanopore sequencing (ONT) of up to 24 samples at a time. There is a need for a higher throughput method to reduce cost per genome. Here we present CoronaHiT, a method capable of multiplexing up to 95 small genomes on a single Nanopore flowcell, which uses transposase mediated addition of adapters and PCR based addition of symmetric barcodes. We demonstrate the method using 48 and 94 SARS-CoV-2 genomes per flowcell, amplified using the ARTIC protocol, and compare performance with Illumina and ARTIC ONT sequencing. Results demonstrate that all sequencing methods produce inaccurate genomes when the RNA extract from SARS-CoV-2 positive clinical sample has a cycle threshold (Ct) >= 32. Results from set same set of 23 samples with a broad range of Cts show that the consensus genomes have >90% coverage (GISAID criteria) for 78.2% of samples for CoronaHiT-48, 73.9% for CoronaHiT-94, 78.2% for Illumina and 73.9% for ARTIC ONT, and all have the same clustering on a maximum likelihood tree. In conclusion, we demonstrate that CoronaHiT can multiplex up to 94 SARS-CoV-2 genomes per nanopore flowcell without compromising the quality of the resulting genomes while reducing library preparation complexity and significantly reducing cost. This protocol will aid the rapid expansion of SARS-CoV-2 genome sequencing globally, to help control the pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL